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The computer simulation of electron microscope images of lattice defects requires de-
tailed knowledge of the displacement fields of the defects. By using the method of Yoffe
(1960), expressions are derived for the displacement field of a regular N-sided poly-
gonal dislocation loop of arbitrary Burgers vector, and of a stacking-fault tetrahedron,
in forms suitable for use in image simulation.

A

A

1. INTRODUCTION

The interpretation of electron microscope images from small dislocation loops in metals has
been greatly facilitated by the use of the technique (Head 1967) for generating computer simu-
lated images (see, for example, Maher ¢t al. 1971; Bullough ez al. 1971; Wilkens & Ruhle 1972;
Hausserman et al. 1972). The latter two papers employ the infinitesimal loop model (Eshelby
1957; Kroupa 1963). The former two papers employ an improved model of the loop strain-
field, namely that derived for a finite circular edge dislocation loop (Kroupa 1960; Bullough &
Newman 1960). The work has been extended to the study of finite circular loops with shear
components of Burgers vector by Holmes ¢t al. (1976) who combined the strain-field of an edge
dislocation loop with that of a pure shear dislocation loop derived by Ohr (1972).

In this paper we describe a more versatile method of constructing the displacement fields due
to small defect clusters (on the basis of isotropic elasticity theory): they are built up from angular
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514 D. K. SALDIN AND M. J. WHELAN

dislocation segments (Yoffe 1960). This technique facilitates the construction of the displacement
fields of dislocation loops of various shapes (e.g. triangular, square, hexagonal and in the limit
of a large number of sides, circular, with arbitrary edge and shear components), as well as those
of more complicated defects such as stacking-fault tetrahedra. Also, the displacement field
expressions thus calculated are analytic (unlike those previously used for the finite circular dis-
location loop) and do not require prior evaluation, thus resulting in a saving of computer time.
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Ficure 1. An angular dislocation.

Ficure 2. Construction of a hexagonal dislocation loop from angular dislocation segments.

2. CONSTRUCTION OF THE DISPLACEMENT FIELDS
(@) Regular polygonal dislocation loop

Figure 1 illustrates an angular dislocation. It consists of two semi-infinite arms of dislocation
line (lying along the positive 2 and { axes) enclosing a cut in the elastic continuum involving a
discontinuity in the displacement field of magnitude b, the Burgers vector. Let the components

of b in the directions of the #, y and z axes be b,, b,, and b,. Substitution of these values into the
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DISPLACEMENT FIELDS OF CRYSTAL DEFECTS 5156

formulae of Yoffe (1960) (see appendix) determines the components (u, v, w) in the directions
of the #, y and 2z axes of the displacement field at a general point P(x, y, z) due to the angular
dislocation.

Consider now figure 2, which illustrates a regular hexagonal dislocation loop, constructed
from six angular dislocations. The loop as a whole is described in terms of a right-handed Cartesian
system of axes X, Y, Z, while its constituent angular dislocations are described by the right-
handed Cartesian axes X, n;, {;, where j takes the values from 1 to N (N being the number of sides
of the polygon). If the Burgers vectors of all the angular dislocations are equal, then the resultant
effect is that due to an N-sided polygonal dislocation loop, because of the cancellation of the
overlapping dislocation segments of opposite sign. Let the Burgers vector of the resultant loop
have components (,, b,, b,). Then if the Burgers vector components of the angular dislocations
J» with respect to the axes X, n;, {; are given by (b, b, bg;),

o = bx (for allj),

b
1
()= (3 .

( cosf; sin 0,-).

where A; .
’ —sinf; cosb;)’

0, is the angle between 5; and Y, measured anticlockwise from ¥, and thus equal to (j— 1) 2/ N.

We require to evaluate displacement field components (U, V, W) with respect to the X, Y, Z
axes, at the general point P(X, Y, Z) due to the loop. Let the coordinates of P with respect to the
axes X, n;, {; be (%;, 7;, ;). Then we have also

x; =X (for all j).

7;+hcos e\ ‘ Y) (2)
and ( ¢, = A; AL
where £ is the distance from the centroid of the polygon to a vertex and o = 2n/N.
Let (u;, v;, w;) be the components in the directions of the axes X, #;, {; of the displacement
field contributed by the jth angular dislocation at P. These components of the displacement
field can be evaluated from Yoffe’s (1960) formulae by suitable substitutions of the vectors

(ba;5 by;» by;) and by identification in her formulae of the following:

y—>77j’
z = §;+hsin fa,

N> Nj-1
{— &1 —hsinia.

(3)

Finally we have the relations
N

U= Y u

A
j=1

N
o )= 2(2)
where C; = Aj*.

It will be observed that although the diagram in figure 2 refers to the special case a of hexa-
gonal dislocation loop, all of the above formulae are applicable to the regular N-sided polygon
(where N takes any integral value greater than 2). Thus in the limit where N becomes large, the
displacement field is a good approximation to that of a circular dislocation loop. It is also

53-2

(4)
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apparent from an examination of Yoffe’s formulae that, by using the FS/RH convention of Bilby
¢t al. (1955) for defining the sign of the Burgers vector, the method introduces a discontinuity in
the displacement field vector R(X, Y, Z) of magnitude — b on crossing the region of the plane
X = 0 which lies outside the perimeter of the loop from positive to negative X (where b is the
Burgers vector of the loop). The displacement field can now be adjusted by adding a vector of
magnitude b to R(X, Y, Z) for negative X, while R(X, Y, Z) for positive X is unaltered. This

e

Ficure 3. Positioning and orientation of a dislocation loop in a foil.

transfers the discontinuity in the displacement field to the inside of the loop. The magnitude of
the discontinuity is now b on crossing this area from positive to negative x. This transformation
does not alter the strain field (which is related to the derivatives of the displacement field in the
regions where the displacement field is continuous). The equations of elasticity only strictly
determine the strains, and the displacement fields so derived are arbitrary to the extent of
constants of integration, and this provides the justification for the above procedure. When b is
not equal to a perfect lattice vector (as for instance in the case of a Frank loop) this construction
automatically introduces a stacking fault inside the loop. It is also clear from the FS/RH rule
that if b is specified with a component in the direction of the positive X axis, the loop
is of vacancy character and if it has a component in the opposite direction, it is of interstitial
character.

Finally, in any practical application in electron microscope image calculations it is necessary
to specify the depth and the orientation of the loop relative to a system of axes with origin at the
electron entry surface of the foil and fixed relative to the foil. Figure 3 shows such a system
consisting of right-handed Cartesian axes E, F, G with G antiparallel to the direction of electron
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flow. The origin of the X, Y, Z system is placed at (0, 0, —d) in the E, F, G system. If (¢, £, g)
are coordinates of P on the latter system of axes we have

B)-G1 3397
Z Z-E Z-F Z-G/ \(g+4d)

where the symbol A indicates a unit vector in the direction of the corresponding axis.

Equations (4) express the displacement field R due to the loop in terms of its components
(U, V, W) in the direction of the axes (X, Y, Z). In the computation of diffraction intensities
from a deformed crystal, it is necessary to know the value of the phase angle 2ng- R as a function
of position (where g is the reciprocal lattice vector of the operating Bragg reflexion). But g is
usually expressed in terms of its Miller indices (4, k, [) where g = ha* +kb* 4 Ic*(a*, b*, c*
are reciprocal lattice vectors). It is therefore convenient to express R in the form R = R,a+ R,
b+ R, c (where a, b, c are the corresponding direct lattice vectors). It then follows that

R, Ig'a* l:/-a* %-a* U
(R2)=<)£-b* ]f.b* %b*)(V) (6)
R, X:c* Y-¢c* Z-c*|] \W

Thus the vector displacement field (R, R,, R;) of an arbitrarily orientated dislocation loop
loop at an arbitrary depth d from the electron-entry surface may be found.

G

T

Ficure 4. A stacking-fault tetrahedron and its positioning and orientation in a foil.
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(b) The stacking-fault tetrahedron

A diagram of a stacking-fault tetrahedron is shown in figure 4. Each of the six edges consists
of a stair-rod dislocation whose Burgers vector is shown in Thomson’s (1953) notation. Consider
the faces a, b, ¢ and d to be composed of triangular edge dislocation loops of Burgers vectors
Oa, OB, Oy and O3 respectively (O is the centroid of the Thompson tetrahedron). At the lines
of contact of their edges, e.g. CD, the resultant Burgers vector is obtained by merely adding those
of the loops in contact. For example, the Burgers vector of the dislocation CD is given by:

BO + Oa — Pa,

which is precisely the Burgers vector of the stair-rod dislocation on the corresponding edge of
the stacking-fault tetrahedron. This is essentially the technique employed to construct the dis-
placement field of the stacking-fault tetrahedron. Triangular edge dislocation loops are con-
structed by methods described in () and are positioned so as to form a tetrahedron.

Let the right-handed coordinate systems (analogous to the X, Y, Z system in (a)) on each of
the triangular faces be X, Y, Z,,, where u takes the values 1-4. We consider a tetrahedron whose
centroid lies at a depth d; below the electron entry surface. It is useful to describe this in terms of
the E, F, G system considered in (a). Let the centroid of the tetrahedron be at the point (0, 0, — d,)
in the E, F, G system, and let the distance from the centroid to any of the faces of the tetrahedron
be d.. If the coordinates of the general point Pin the E, F, G system are (¢, f, g), then its coordinates
) are determined by the equations

with respect to the axes X, Y, Z,, namely (X, Y, Z,
(Xrd)\ (EBXPXGX)
Lo J=\gY, LY. YL S (7)
Z, EZ, F-7Z, G2,/ \(g+d)

If [ is the length of each edge of the tetrahedron,
do = 1!
Let # = 1, 2, 3 and 4 correspond to the faces a, b, ¢ and d respectively of the Thompson tetra-
hedron. The tetrahedron may be orientated by specifying the axes X, Y,, Z,. TheAse are [111],

[211] and [011] respectively. The axes for x4 = 1, 2 and 3 may be generated from X,, Y,, Z, by
rotations of 180° about the axes [100], [010] and [001] respectively, and we thus have,

%, =M%,

Y,=M,Y, for p=1,2 and 3, (8)

A

A
Z,=M,Z,

1 0 0 -1 0 0 -1 0 0
where M =(0 -1 0}, M,= 0 1 0), M,= 0 —1 0}
0 0o -1 0 0 -1 0 0 1

Substitutions of the coordinates (x,, y,, z,) and the appropriate Burgers vectors into the formu-
lae described in () determines the contributions to the displacement field from each constituent
triangular loop, and appropriate additions of these expressions determine the strain-field of the
stacking-fault tetrahedron.

The discontinuities in the displacement field on crossing any of the faces do not yet correspond
to the stacking faults on these faces (on the face d, for example, the stacking-fault vector is of
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magnitude |D§|). The discontinuity in the vector R(e, f, g) introduced by this technique of
construction is |08|. To overcome this problem consider the addition of a displacement of
magnitude DO to all the material inside the tetrahedron. The displacement discontinuity on
face d then becomes (we are considering the case of a vacancy-type tetrahedron whose faces are
traversed from positive to negative x,),

DO + 06 - Dé

The discontinuities on the other faces become
DO + Oa - Do = DA +Ag,
DO +Op - Dp = DB + Bj,
DO+ Oy - Dy =DC+Cy.

The vectors DA, DB and DC of course correspond to perfect lattice vectors in the f.c.c. lattice
and thus the discontinuities on the faces a, b, and c, are Aa, B and Cy respectively, which are
precisely the fault vectors on the corresponding faces of the stacking-fault tetrahedron, dem-
onstrating the symmetry of the tetrahedron with respect to each of the faces. This procedure
may therefore be used to construct not only the strain field but also the correct stacking faults
on the faces of the tetrahedron. The displacement field of the interstitial-type tetrahedron may
also be constructed by this method if the directions of the Burgers vectors of all constituent
loops are reversed. This also has the effect of creating extrinsic (rather than intrinsic as for the
the vacancy-type tetrahedron) stacking faults on the faces. It is interesting to note that an atom
at the centroid of a stacking-fault tetrahedron occupies an interstitial site in the (hypothetical)
perfect reference lattice (i.e. one corresponding to atom positions at great distance from the
tetrahedron, but extrapolated to the region inside the tetrahedron).

3. CONCLUSIONS

This paper describes a versatile method of constructing the displacement field of a polygonal
dislocation loop and of a stacking-fault tetrahedron from angular dislocation segments. When
used with a computer program for calculating electron diffraction image contrast and an image
display system, realistic computer simulated images can be obtained. Results obtained by use of
this technique for identifying small defect clusters observed in thin foils after ion irradiation are
presented in the accompanying paper.

The authors wish to thank Professor Sir Peter Hirsch, F.R.S., for the provision of laboratory
facilities and for many useful discussions. One of us (D.K.S.) acknowledges financial support
from the Atomic Energy Research Establishment, Harwell and from the Central Electricity
Electricity Generating Board.
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APPENDIX

With reference to figure 1, the displacement field components «,, v,, w, due to the ¥~-component
b, of the Burgers vector of the angular dislocation at the point P (x, y, z) or (x, 9, §) are

= by XY X7
o = bm¢+8n(1—0') (r(r—z) ——r(r—g))’
b, ysina  ypy y?
Vg = $7(1—0) ( r—¢ _r(r—§)+r(r—z) +(1—20) (cosetln (r—&) —In (r—z))), (1)
b, ncose Yy 7z .
W, = 8n(1—0) ( ri)g _;_r(r—g)_(1_20) sina In (r—g)),

where o is Poisson’s ratio and ¢ is the solid angle subtended at P by the shaded area and can be

¢ = L arctan (Q —arcta (—7-7 +arctan (iﬁ‘&
T dn x n p a = st 7T .

written,

The sign in front of (1 —2¢) in the expression for w, differs from that quoted in Yoffe’s (1960)
paper. The sign quoted here is the correct one. This was also pointed out by Hokanson (1963).

If u,, v,, w,, are the displacement field components due to the y- component b, of Burgers
vector, then

Uy = Sn(lby_o_) (‘::rcgs;;_r(rsz) - (1 —20‘) (COSOLln (r—§)—1n (T—Z))),
_ by x ycosa sinacosa y

vy_by¢+81t(1—0') (r(r—-g)_ r—¢ _r(r—z))’ (2)
— byx zcosa cos?a 1

Y = 8n(l—o) (r(r—g)_ r—¢ +;)'

Ifu,, v,, w, are the displacement field components due to the z-component b, of Burgers vector
then,

b,sin o X%
"= e ((1—20‘) In (r_g)_r——(r_g)),
_ byxsina (sina y
vZ_Sn(l—o‘)(r—g—r(r—g))’ (3)
—b byxsine fcosa z
o= b ()

The complete displacement field at P due to an angular dislocation with an arbitrary Burgers
vector is found by adding the corresponding components of equations (1), (2) and (3).

REFERENGES

Bilby, B. A., Bullough, R. & Smith, E. 1955 Proc. R. Soc. Lond. A 231, 263.
Bullough, R., Maher, D. M. & Perrin, R. C. 1971 Phys. Stat. Sol. B 43, 689.
Bullough, R. & Newman, R. C. 1960 Phil. Mag. 5, 921.

Eshelby, J. D. 1957 Proc. R. Soc. Lond. A 241, 376.

Hausserman, F., Ruhle, M. & Wilkens, M. 1972 Phys. Stat. Sol. B 50, 445.
Head, A. K. 1967 Aust. J. Phys. 20, 557.

Hokanson, J. L. 1963 J. appl. Phys. 34, 2337.


http://rsta.royalsocietypublishing.org/

\
1

y

L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\\
P9

A

/
L

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DISPLACEMENT FIELDS OF CRYSTAL DEFECTS 521

Holmes, S. M., Eyre, B. L. & Perrin, R. C. 1976 Electron Microscopy 1976 (ed. Brandon, D. G.). Proc. 6th Eur. Reg.
Cong., Jerusalem, vol. I, p. 279. Jerusalem: TAL International.

Kroupa, F. 1960 Czech. J. Phys. B 10, 284.

Kroupa, F. 1963 Czech J. Phys. A 13, 301.

Mabher, D. M., Perrin, R. C. & Bullough, R. 1971 Phys. Stat. Sol. B 43, 707.

Ohr, S. M. 1972 Phil. Mag. 26, 1307.

Thompson, N. 1953 Proc. phys. Soc. B 66, 481.

Wilkens, M. & Ruhle, M. 1972 Phys. Stat. Sol. B 49, 749.

Yoffe, E. H. 1960 Phil. Mag. 5, 161.

54 Vol. 292. A


http://rsta.royalsocietypublishing.org/

